Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pathogens ; 11(8)2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-1997738

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is implicated as a host cell receptor that causes infection in the pathogenesis of coronavirus disease 2019 (COVID-19), and its genetic polymorphisms in the ACE2 gene may promote cardiovascular disease and systemic inflammatory injury in COVID-19 patients. Hence, the genetic background may potentially explain the broad interindividual variation in disease susceptibility and/or severity. METHODS: Genetic susceptibility to COVID-19 was analyzed by examining single-nucleotide polymorphisms (SNPs) of ACE2 in 246 patients with COVID-19 and 210 normal controls using the TaqMan genotyping assay. RESULTS: We demonstrated that the ACE2 SNPs rs4646142, rs6632677, and rs2074192 were associated with COVID-19 (for all, p < 0.05), and the differences in the ACE2 SNPs rs4646142 and rs6632677 were correlated with COVID-19-related systemic inflammatory injury and cardiovascular risk. Specifically, rs4646142 was associated with high-sensitivity C-reactive protein (hs-CRP), prealbumin (PAB), apolipoprotein A (APOA), high-density lipoprotein (HDL), and acid glycoprotein (AGP) levels. Rs6632677 was also associated with elevated CRP, acid glycoprotein (AGP), and haptoglobin (HPT). CONCLUSIONS: Our results suggest that the ACE2 SNPs rs4646142 and rs6632677 may be common genetic loci and optimal early identification genetic markers for COVID-19 with cardiovascular risk.

3.
Front Public Health ; 9: 672215, 2021.
Article in English | MEDLINE | ID: covidwho-1282422

ABSTRACT

Coronavirus disease 2019 (COVID-19) pneumonia is caused by the virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has rapidly become a global public health concern. As the new type of betacoronavirus, SARS-CoV-2 can spread across species and between populations and has a greater risk of transmission than other coronaviruses. To control the spread of SARS-CoV-2, it is vital to have a rapid and effective means of diagnosing asymptomatic SARS-CoV-2-positive individuals and patients with COVID-19, an early isolation protocol for infected individuals, and effective treatments for patients with COVID-19 pneumonia. In this review, we will summarize the novel diagnostic tools that are currently available for coronavirus, including imaging examinations and laboratory medicine by next-generation sequencing (NGS), real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) analysis, immunoassay for COVID-19, cytokine and T cell immunoassays, biochemistry and microbiology laboratory parameters in the blood of the patients with COVID-19, and a field-effect transistor-based biosensor of COVID-19. Specifically, we will discuss the effective detection rate and assay time for the rRT-PCR analysis of SARS-CoV-2 and the sensitivity and specificity of different antibody detection methods, such as colloidal gold and ELISA using specimen sources obtained from the respiratory tract, peripheral serum or plasma, and other bodily fluids. Such diagnostics will help scientists and clinicians develop appropriate strategies to combat COVID-19.


Subject(s)
COVID-19 Testing , COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , SARS-CoV-2 , Sensitivity and Specificity
4.
J Transl Med ; 18(1): 345, 2020 09 05.
Article in English | MEDLINE | ID: covidwho-745680

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads rapidly and has attracted worldwide attention. METHODS: To improve the forecast accuracy and investigate the spread of SARS-CoV-2, we constructed four mathematical models to numerically estimate the spread of SARS-CoV-2 and the efficacy of eradication strategies. RESULTS: Using the Susceptible-Exposed-Infected-Removed (SEIR) model, and including measures such as city closures and extended leave policies implemented by the Chinese government that effectively reduced the ß value, we estimated that the ß value and basic transmission number, R0, of SARS-CoV-2 was 0.476/6.66 in Wuhan, 0.359/5.03 in Korea, and 0.400/5.60 in Italy. Considering medicine and vaccines, an advanced model demonstrated that the emergence of vaccines would greatly slow the spread of the virus. Our model predicted that 100,000 people would become infected assuming that the isolation rate α in Wuhan was 0.30. If quarantine measures were taken from March 10, 2020, and the quarantine rate of α was also 0.3, then the final number of infected people was predicted to be 11,426 in South Korea and 147,142 in Italy. CONCLUSIONS: Our mathematical models indicate that SARS-CoV-2 eradication depends on systematic planning, effective hospital isolation, and SARS-CoV-2 vaccination, and some measures including city closures and leave policies should be implemented to ensure SARS-CoV-2 eradication.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Eradication , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Epidemics/prevention & control , Government , Humans , Italy/epidemiology , Pneumonia, Viral/epidemiology , Quarantine , Republic of Korea/epidemiology , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL